Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
Arch Insect Biochem Physiol ; 107(4): e21822, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34155698

RESUMO

RNAi efficiency in insects is different from species to species; some species in Coleoptera are relatively more amenable to RNA interference (RNAi) than other species. One of the major factors is the presence of dsRNA-degrading enzymes, called dsRNases, in saliva, gut, or hemolymph in insects, which degrade the double-stranded RNA (dsRNA) introduced, resulting in the low efficacy of RNAi. In this study, we report a dsRNA-degrading activity in the gut homogenates from the spotted-wing drosophila, Drosophila suzukii, by ex vivo assay. Then, we identified two Drosophila suzukii dsRNase genes, named DrosudsRNase1 and DrosudsRNase2. In silico analysis shows that the gene structures are similar to dsRNases found in other insects. When dsRNases expressed in Sf9 cells were compared for their dsRNA degrading activities, dsRNase1 was more vital than dsRNase2. Both dsRNases were expressed highly and exclusively in the gut compared to the rest of body. Also, they were highly expressed during larval and adult stages but not in embryonic and pupal stages, suggesting the dsRNases protect foreign RNA molecules received during the feeding periods. DsRNase1 was expressed at a higher level in adults, whereas dsRNase2 showed more expression in early larvae. Our study on the tissue and development-specific patterns of dsRNases provides an improved understanding of the RNAi application for the management of D. suzukii.


Assuntos
Drosophila/enzimologia , Endorribonucleases/metabolismo , Proteínas de Insetos/metabolismo , RNA de Cadeia Dupla/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Drosophila/genética , Embrião não Mamífero/enzimologia , Endorribonucleases/genética , Feminino , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/genética , Larva/enzimologia , Masculino , Pupa/enzimologia , Células Sf9
2.
Arch Insect Biochem Physiol ; 106(2): e21760, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33231898

RESUMO

The Chinese white pine beetle Dendroctonus armandi (Tsai and Li) is a significant pest of the Qinling and Bashan Mountains pine forests of China. The Chinese white pine beetle can overcome the defences of Chinese white pine Pinus armandi (Franch) through pheromone-assisted aggregation that results in a mass attack of host trees. We isolated five full-length complementary DNAs encoding mevalonate pathway-related enzyme genes from the Chinese white pine beetle (D. armandi), which are acetoacetyl-CoA thiolase (AACT), geranylgeranyl diphosphate synthase (GGPPS), mevalonate kinase (MK), mevalonate diphosphate decarboxylase (MPDC), and phosphomevalonate kinase (PMK). Bioinformatic analyses were performed on the full-length deduced amino acid sequences. Differential expression of these five genes was observed between sexes, and within these significant differences among topically applied juvenile hormone III (JH III), fed on phloem of P. armandi, tissue distribution, and development stage. Mevalonate pathway genes expression were induced by JH III and feeding.


Assuntos
Genes de Insetos , Proteínas de Insetos/genética , Redes e Vias Metabólicas/genética , Ácido Mevalônico/metabolismo , Transcriptoma , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Masculino , Filogenia , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Gorgulhos/enzimologia , Gorgulhos/crescimento & desenvolvimento
3.
Genes (Basel) ; 12(1)2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374651

RESUMO

Bagworm, Metisa plana (Lepidoptera: Psychidae) is a ubiquitous insect pest in the oil palm plantations. M. plana infestation could reduce the oil palm productivity by 40% if it remains untreated over two consecutive years. Despite the urgency to tackle this issue, the genome and transcriptome of M. plana have not yet been fully elucidated. Here, we report a comprehensive transcriptome dataset from four different developmental stages of M. plana, comprising of egg, third instar larva, pupa and female adult. The de novo transcriptome assembly of the raw data had produced a total of 193,686 transcripts, which were then annotated against UniProt, NCBI non-redundant (NR) database, Gene Ontology, Cluster of Orthologous Group, and Kyoto Encyclopedia of Genes and Genomes databases. From this, 46,534 transcripts were annotated and mapped to 146 known metabolic or signalling KEGG pathways. The paper further identified 41 differentially expressed transcripts encoding seven genes in the chitin biosynthesis pathways, and their expressions across each developmental stage were further analysed. The genetic diversity of M. plana was profiled whereby there were 21,516 microsatellite sequences and 379,895 SNPs loci found in the transcriptome of M. plana. These datasets add valuable transcriptomic resources for further study of developmental gene expression, transcriptional regulations and functional gene activities involved in the development of M. plana. Identification of regulatory genes in the chitin biosynthesis pathway may also help in developing an RNAi-mediated pest control management by targeting certain pathways, and functional studies of the genes in M. plana.


Assuntos
Quitina/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos/genética , Proteínas de Insetos/genética , Lepidópteros/fisiologia , Animais , Vias Biossintéticas/genética , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Controle de Pragas/métodos , Polimorfismo de Nucleotídeo Único , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , Interferência de RNA , Transcriptoma/genética
4.
Sci Rep ; 10(1): 9085, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32493946

RESUMO

The European corn borer, Ostrinia nubilalis Hbn., is a pest Lepidopteran species whose larvae overwinter by entering diapause, gradually becoming cold-hardy. To investigate metabolic changes during cold hardening, activities of four metabolic enzymes - citrate synthase (CS), lactate dehydrogenase (LDH), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in whole-body homogenates of pupae, non-diapausing and diapausing larvae acclimated to 5 °C, -3 °C and -16 °C. The highest CS activity was detected in non-diapausing larvae, reflecting active development, while the highest in vitro LDH activity was recorded in diapausing larvae at temperatures close to 0 °C, evidencing a metabolic switch towards anaerobic metabolism. However, in-gel LDH activity showed that production of pyruvate from lactate is triggered by sub-zero temperatures. The activities of both aminotransferases were highest in non-diapausing larvae. Our findings suggest that during diapause and cold hardening the aminotransferases catalyse production of L-alanine, an important cryoprotectant, and L-aspartate, which is closely tied to both transamination reactions and Krebs cycle. The results of this study indicate that, during diapause, the activity of metabolic enzymes is synchronized with exogenous factors, such as temperatures close to 0 °C. These findings support the notion that diapause is metabolically plastic and vibrant, rather than simply a passive, resting state.


Assuntos
Aclimatação/fisiologia , Diapausa de Inseto/fisiologia , Mariposas/enzimologia , Mariposas/fisiologia , Alanina/metabolismo , Animais , Ácido Aspártico/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Temperatura Baixa , Larva/enzimologia , Larva/metabolismo , Larva/fisiologia , Mariposas/metabolismo , Pupa/enzimologia , Pupa/metabolismo , Pupa/fisiologia , Temperatura , Transaminases/metabolismo , Zea mays
5.
Insect Biochem Mol Biol ; 122: 103371, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32283279

RESUMO

Vasa is an ATP-dependent RNA helicase, participating in multiple biological processes. It has been widely used as a germ cell marker and its promoter has become a key component of several genetic pest control systems. Here we present the vasa gene structure and its promoter activity in Plutella xylostella, one of the most destructive pests of cruciferous crops. Full length Pxvasa cDNA sequences were obtained, revealing 14 exons and at least 30 alternatively spliced transcripts. Inferred amino acid sequences showed nine conserved DEAD-box family protein motifs with partial exclusion from some isoforms. Real-time quantitative PCR indicated the up-regulation of Pxvasa in both female and male adults compared with other developmental stages, and the expression levels of Pxvasa were found to be much higher in adult gonads, especially ovaries, than in other tissues. The putative promoter region of Pxvasa was sequenced and several ecdysone-induced transcription factor (TF) binding sites were predicted in silico. To further analyze the promoter region, two upstream regulatory fragments of different lengths were tested as putative promoters in transient cell and embryo expression assays, one of which was subsequently utilized to drive Cas9 expression in vivo. A transgenic line was recovered and the expression patterns of Cas9 and native Pxvasa were profiled in adult tissues and eggs with RT-PCR. This work provides the foundation for further studies on the gene functions of Pxvasa as well as the potential application of its promoter in genetic manipulation of P. xylostella.


Assuntos
Proteínas de Insetos/genética , Mariposas/genética , RNA Helicases/genética , Processamento Alternativo , Animais , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Óvulo/enzimologia , Filogenia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , RNA Helicases/metabolismo
6.
Int J Mol Sci ; 21(7)2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32244803

RESUMO

Chitin deacetylases (CDAs) are chitin-modifying enzymes known to play vital roles in insect metamorphosis and development. In this study, we identified and characterized a chitin deacetylase 1 gene (LsCDA1) from the cigarette beetle Lasioderma serricorne. LsCDA1 contains a 1614 bp open reading frame encoding a protein of 537 amino acids that includes domain structures typical of CDAs. LsCDA1 was mainly expressed in the late larval and late pupal stages. In larval tissues, the highest level of LsCDA1 was detected in the integument. The expression of LsCDA1 was induced by 20-hydroxyecdysone (20E) in vivo, and it was significantly suppressed by knocking down the expression of ecdysteroidogenesis genes and 20E signaling genes. RNA interference (RNAi)-aided silencing of LsCDA1 in fifth-instar larvae prevented the larval-pupal molt and caused 75% larval mortality. In the late pupal stage, depletion of LsCDA1 resulted in the inhibition of pupal growth and wing abnormalities, and the expression levels of four wing development-related genes (LsDY, LsWG, LsVG, and LsAP) were dramatically decreased. Meanwhile, the chitin contents of LsCDA1 RNAi beetles were significantly reduced, and expressions of three chitin synthesis pathway genes (LsTRE1, LsUAP1, and LsCHS1) were greatly decreased. The results suggest that LsCDA1 is indispensable for larval-pupal and pupal-adult molts, and that it is a potential target for the RNAi-based control of L. serricorne.


Assuntos
Amidoidrolases/genética , Besouros/genética , Proteínas de Insetos/genética , Metamorfose Biológica/genética , Muda/genética , Amidoidrolases/classificação , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Quitina/metabolismo , Besouros/enzimologia , Besouros/crescimento & desenvolvimento , Ecdisterona/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Filogenia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , Asas de Animais/anormalidades , Asas de Animais/metabolismo
7.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370143

RESUMO

Adenosine kinase (ADK) is the first enzyme in the adenosine remediation pathway that catalyzes adenosine phosphorylation into adenosine monophosphate, thus regulating adenosine homeostasis in cells. To obtain new insights into ADK from Bombyx mori (BmADK), we obtained recombinant BmADK, and analyzed its activity, structure, and function. Gel-filtration showed BmADK was a monomer with molecular weight of approximately 38 kDa. Circular dichroism spectra indicated BmADK had 36.8% α-helix and 29.9% ß-strand structures, respectively. The structure of BmADK was stable in pH 5.0-11.0, and not affected under 30 °C. The melting temperature and the enthalpy and entropy changes in the thermal transition of BmADK were 46.51 ± 0.50 °C, 253.43 ± 0.20 KJ/mol, and 0.79 ± 0.01 KJ/(mol·K), respectively. Site-directed mutagenesis demonstrated G68, S201, E229, and D303 were key amino acids for BmADK structure and activity. In particular, S201A mutation significantly increased the α-helix content of BmADK and its activity. BmADK was located in the cytoplasm and highly expressed in the silk gland during the pre-pupal stage. RNA interference revealed the downregulation of BmADK decreased ATG-8, Caspase-9, Ec-R, E74A, and Br-C expression, indicating it was likely involved in 20E signaling, apoptosis, and autophagy to regulate silk gland degeneration and silkworm metamorphosis. Our study greatly expanded the knowledge on the activity, structure, and role of ADK.


Assuntos
Adenosina Quinase/genética , Bombyx/genética , Proteínas de Insetos/genética , Larva/genética , Pupa/genética , Adenosina/química , Adenosina/metabolismo , Adenosina Quinase/química , Adenosina Quinase/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Cinética , Larva/enzimologia , Larva/crescimento & desenvolvimento , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
Artigo em Inglês | MEDLINE | ID: mdl-31454682

RESUMO

Heortia vitessoides Moore is a notorious defoliator of Aquilaria sinensis (Lour.) Gilg trees. Chitin deacetylases (CDAs) catalyze the N-deacetylation of chitin, which is a crucial process for chitin modification. Here, we identified and characterized HvCDA1 and HvCDA2 from H. vitessoides. HvCDA1 and HvCDA2 possess typical domain structures of CDAs and belong to the Group I CDAs. HvCDA1 and HvCDA2 were highly expressed before and after the larval-larval molt. In addition, both exhibited relatively high mRNA expression levels during the larval-pupal molt, the pupal stage, and the pupal-adult molt. HvCDA1 and HvCDA2 transcript expression levels were highest in the body wall and relatively high in the larval head. Significant increases in the HvCDA1 and HvCDA2 transcript expression levels were observed in the larvae upon exposure to 20-hydroxyecdysone. RNA interference-mediated HvCDA1 and HvCDA2 silencing significantly inhibited HvCDA1 and HvCDA2 expression, with abnormal or nonviable phenotypes being observed. Post injection survival rates of the larvae injected with dsHvCDA1 and dsHvCDA2 were 66.7% and 46.7% (larval-pupal) during development and 23.0% and 6.7% (pupal-adult), respectively. These rates were significantly lower than those of the control group insects. Our results suggest that HvCDA1 and HvCDA2 play important roles in the larval-pupal and pupal-adult transitions and represent potential targets for the management of H. vitessoides.


Assuntos
Amidoidrolases/metabolismo , Pupa/enzimologia , Amidoidrolases/genética , Animais , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Muda/genética , Muda/fisiologia , Mariposas/enzimologia , Pupa/crescimento & desenvolvimento , Interferência de RNA
9.
Insect Mol Biol ; 28(6): 862-872, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31155808

RESUMO

Sucrose is the main product of photosynthesis in plants, providing a rich carbon and energy source for the physiological growth and development of insects. In a previous study, we identified a novel sucrose hydrolase (SUH) in the larval midgut of moths. Intriguingly, there are two copies of Suh, namely Suh1 and Suh2, in several species of butterflies. However, the biochemical characteristics of SUHs in butterflies remain unclear. In this study, we found that this duplication and subsequent diversification produced two Suh genes in Papilio xuthus. These two PxSuh genes were significantly divergent in terms of their expression pattern and enzyme properties. PxSuh messenger RNA expression was highest during the larval stage, reduced in the prepupal and pupal stages and, for PxSuh1, slightly increased again in the adult. The observed levels of PxSuh2 were overall below those of PxSuh1 amongst the development stages examined. Compared with PxSUH2, which has maintained the original gene function of maltose hydrolysis, PxSUH1 exhibits substrate specificity for sucrose with an optimum enzyme activity occurring at an alkaline pH. The data show that PxSuh1 is evolutionarily adapted for effective functioning in an alkaline digestive system. Furthermore, we find that functional diversification of Suh facilitates P. xuthus to digestive carbohydrate of host plants. Thus, our findings offer new insights into the ecological and evolutionary adaptation of digestive enzymes in butterflies.


Assuntos
Borboletas/genética , Duplicação Gênica , Hidrolases/genética , Proteínas de Insetos/genética , Sacarose/metabolismo , Animais , Borboletas/enzimologia , Borboletas/crescimento & desenvolvimento , Hidrolases/metabolismo , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Pupa/enzimologia , Pupa/crescimento & desenvolvimento
10.
Insect Biochem Mol Biol ; 110: 128-135, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108167

RESUMO

The chitin modifying deacetylases (CDA) CDA1 and CDA2 have been reported to play partially redundant roles during insect cuticle formation and molting and tracheal morphogenesis in various insect species. In order to distinguish possible functional differences between these two enzymes, we analyzed their function during wing development in the fruit fly Drosophila melanogaster. In tissue-specific RNA interference experiments, we demonstrate that DmCDA1 (Serpentine, Serp) and DmCDA2 (Vermiform, Verm) have distinct functions during Drosophila adult wing cuticle differentiation. Chitosan staining revealed that Serp is the major enzyme responsible for chitin deacetylation during wing cuticle formation, while Verm does not seem to be needed for this process. Indeed, it is questionable whether Verm is a chitin deacetylase at all. Atomic force microscopy suggested that Serp and Verm have distinct roles in establishing the shape of nanoscale bumps at the wing surface. Moreover, our data indicate that Verm but not Serp is required for the laminar arrangement of chitin. Both enzymes participate in the establishment of the cuticular inward barrier against penetration of xenobiotics. Taken together, correct differentiation of the wing cuticle involves both Serp and Verm in parallel in largely non-overlapping functions.


Assuntos
Amidoidrolases/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Asas de Animais/crescimento & desenvolvimento , Amidoidrolases/metabolismo , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Interferência de RNA , Asas de Animais/enzimologia
11.
Elife ; 82019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31090542

RESUMO

The conserved core planar polarity pathway is essential for coordinating polarised cell behaviours and the formation of polarised structures such as cilia and hairs. Core planar polarity proteins localise asymmetrically to opposite cell ends and form intercellular complexes that link the polarity of neighbouring cells. This asymmetric segregation is regulated by phosphorylation through poorly understood mechanisms. We show that loss of phosphorylation of the core protein Strabismus in the Drosophila pupal wing increases its stability and promotes its clustering at intercellular junctions, and that Prickle negatively regulates Strabismus phosphorylation. Additionally, loss of phosphorylation of Dishevelled - which normally localises to opposite cell edges to Strabismus - reduces its stability at junctions. Moreover, both phosphorylation events are independently mediated by Casein Kinase Iε. We conclude that Casein Kinase Iε phosphorylation acts as a switch, promoting Strabismus mobility and Dishevelled immobility, thus enhancing sorting of these proteins to opposite cell edges.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Polaridade Celular , Proteínas Desgrenhadas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/fisiologia , Proteínas de Membrana/metabolismo , Animais , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Pupa/enzimologia , Pupa/fisiologia , Asas de Animais/enzimologia , Asas de Animais/fisiologia
12.
Environ Sci Pollut Res Int ; 26(14): 14300-14312, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30864030

RESUMO

Spotted bollworm, Earias vittella, is one of the most serious and devastating insect pests of vegetables and cotton. Currently, insecticides are necessary for its control in nearly all crop systems. In this paper, we evaluate the sub-lethal effects of lufenuron on biological traits and activity of detoxification enzymes: cytochrome P450 monooxygenases, esterase, and glutathione S-transeferase (GST) in second instar larvae of E. vittella. Results showed that sub-lethal concentrations (LC15 and LC40 of lufenuron), prolonged larval period (at LC40 = 13.86 ± 1.22 day, LC15 = 13.14 ± 1.15 day, control = 12.28 ± 0.7), pupal duration (LC40 = 11.1 ± day, LC15 = 11.8 ± 0.28 day, control = 9.40 ± 0.52), and extended mean generation time (LC40 = 27.3 ± 0.43 LC15 = 29.0 ± 1.19 day, control = 26.0 ± 0.65). Sub-lethal exposure significantly prolonged the pre-adult stage, decreased pupal weight, and reduced adult longevity in the parent (F0) and F1 generation. Moreover, the fecundity and egg viability were significantly lowered in parental and F1 generations at both sub-lethal concentrations compared to the control. While no significant effects were noted on reproductive parameters such as the intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) of F1 generation when compared to the control. Only mean generation time (T) in F1 at LC15 was significantly longer compared to the LC40 and control (LC40 = 3.79 ± 0.37, LC15 = 32.28 ± 1.55 day, control = 29.79 ± 0.55). Comparatively, the activities of cytochrome P450 monooxygenases and esterase were higher than GST in treated populations. The increase in resistance development against insecticides may possibly because of elevated activity of detoxification enzymes. These results provide useful information for monitoring resistance in integrated pest management (IPM) programs for E. vittella.


Assuntos
Benzamidas/farmacologia , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Mariposas/enzimologia , Animais , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Inativação Metabólica/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/enzimologia , Pupa/efeitos dos fármacos , Pupa/enzimologia , Reprodução/efeitos dos fármacos
13.
Insect Mol Biol ; 28(4): 578-590, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737848

RESUMO

The QM gene that encodes for the ribosomal protein L10 was firstly identified from human tumour cells as a tumour suppressor. In this study, a QM gene was identified in silkworm Bombyx mori (BmQM) and its immunomodulatory function was explored. BmQM messenger RNA (mRNA) and protein were highly expressed in the silk gland and fat body, and expressed in all stages of silkworm growth. After challenged with four different microorganisms, the expression levels of BmQM mRNA in fat body or haemocytes were significantly upregulated compared with the control. After knock-down of BmQM gene, the expressions of some immune genes (PGRPS6, Gloverin0, Lysozyme and Moricin) were affected, and the transcripts of prophenoloxidase1 and prophenoloxidase2 have different degrees of change. The phenoloxidase activity was significantly reduced when the purified recombinant BmQM protein was injected. Recombinant BmQM protein inhibited systemic melanization and suppressed prophenoloxidase activation stimulated by Micrococcus luteus, but it did not affect phenoloxidase activity. Far-western blotting assays showed that the BmQM protein interacted with silkworm BmJun protein, which negatively regulates AP-1 expression. Our results indicated that BmQM protein could affect some immune gene expression and negatively regulate the prophenoloxidase-activating system, and it may play an important role in regulation of the innate immunity in insects.


Assuntos
Bombyx/genética , Catecol Oxidase/genética , Precursores Enzimáticos/genética , Proteínas de Insetos/genética , Proteína Ribossômica L10/genética , Animais , Bombyx/enzimologia , Bombyx/crescimento & desenvolvimento , Bombyx/imunologia , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata/genética , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Micrococcus luteus/fisiologia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Proteína Ribossômica L10/metabolismo
14.
Pest Manag Sci ; 75(4): 986-997, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30204286

RESUMO

BACKGROUND: Bark beetles rely on detoxifying enzymes to resist the defensive terpenoids of their host trees. Research on carboxylesterases (CarEs) has focused on their multiple functions in the metabolic detoxification of pesticides and plant allelochemicals, drug resistance, and juvenile hormone and pheromone degradation. RESULT: We identified eight new CarE genes in the Chinese white pine beetle (Dendroctonus armandi) and carried out bioinformatics analysis on the deduced full-length amino acid sequences. Differential transcript levels of CarE genes were observed between sexes; within these levels, significant differences were found among the different development stages, and between insects fed on the phloem of Pinus armandi and exposed to five stimuli [(-)-α-pinene, (-)-ß-pinene, (+)-3-carene, limonene and turpentine] at 8 and 24 h. CONCLUSION: Transcription levels of CarE genes suggest some relationship with the detoxification of terpenoids released by host trees. The functions of bark beetle esterase are mainly in hydrolyzing the host chemical defense and degrading odorant molecules during host selection and colonization. © 2018 Society of Chemical Industry.


Assuntos
Hidrolases de Éster Carboxílico/genética , Proteínas de Insetos/genética , Monoterpenos/metabolismo , Pinus/química , Gorgulhos/genética , Sequência de Aminoácidos , Animais , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Feminino , Inativação Metabólica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Filogenia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Alinhamento de Sequência , Transcrição Gênica , Gorgulhos/enzimologia , Gorgulhos/crescimento & desenvolvimento
15.
Dev Growth Differ ; 60(8): 502-508, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30368781

RESUMO

The transcriptional repressor Blimp-1 is a labile protein. This characteristic is key for determining pupation timing because the timing of the disappearance of Blimp-1 affects pupation timing by regulating the expression of its target ßftz-f1. However, the molecular mechanisms that regulate the protein turnover of Blimp-1 are still unclear. Here, we demonstrate that Blimp-1 is regulated by the ubiquitin proteasome system. We show that Blimp-1 degradation is inhibited by proteasome inhibitor MG132. Pupation timing was delayed in mutants of 26S proteasome subunits as well as FBXO11, which recruits target proteins to the 26S proteasome as a component of the SCF ubiquitin ligase complex by slowing down the degradation speed of Blimp-1. Delay in pupation timing in the FBXO11 mutant was suppressed by the induction of ßFTZ-F1. Furthermore, fat-body-specific knockdown of proteasomal activity was sufficient to induce a delay in pupation timing. These results suggest that Blimp-1 is degraded by the 26S proteasome and is recruited by FBXO11 in the fat body, which is important for determining pupation timing.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Pupa/crescimento & desenvolvimento , Pupa/metabolismo , Proteínas Repressoras/metabolismo , Animais , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteínas F-Box/metabolismo , Corpo Adiposo/metabolismo , Leupeptinas/química , Leupeptinas/farmacologia , Pupa/enzimologia , Proteínas Repressoras/antagonistas & inibidores , Fatores de Tempo
16.
Insect Biochem Mol Biol ; 101: 57-65, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30098411

RESUMO

Melanization is a universal defense mechanism of insects against microbial infection. During this response, phenoloxidase (PO) is activated from its precursor by prophenoloxidase activating protease (PAP), the terminal enzyme of a serine protease (SP) cascade. In the tobacco hornworm Manduca sexta, hemolymph protease-14 (HP14) is autoactivated from proHP14 to initiate the protease cascade after host proteins recognize invading pathogens. HP14, HP21, proHP1*, HP6, HP8, PAP1-3, and non-catalytic serine protease homologs (SPH1 and SPH2) constitute a portion of the extracellular SP-SPH system to mediate melanization and other immune responses. Here we report the expression, purification, and functional characterization of M. sexta HP2. The HP2 precursor is synthesized in hemocytes, fat body, integument, nerve and trachea. Its mRNA level is low in fat body of 5th instar larvae before wandering stage; abundance of the protein in hemolymph displays a similar pattern. HP2 exists as an active enzyme in plasma of the wandering larvae and pupae in the absence of an infection. HP14 cleaves proHP2 to yield active HP2. After incubating active HP2 with larval hemolymph, we detected higher levels of PO activity, i.e. an enhancement of proPO activation. HP2 cleaved proPAP2 (but not proPAP3 or proPAP1) to yield active PAP2, responsible for a major increase in IEARpNA hydrolysis. PAP2 activates proPOs in the presence of a cofactor of SPH1 and SPH2. In summary, we have identified a new member of the proPO activation system and reconstituted a pathway of HP14-HP2-PAP2-PO. Since high levels of HP2 mRNA were present in integument and active HP2 in plasma of wandering larvae, HP2 likely plays a role in cuticle melanization during pupation and protects host from microbial infection in a soil environment.


Assuntos
Endopeptidases/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Insetos/genética , Manduca/enzimologia , Melaninas/genética , Monofenol Mono-Oxigenase/genética , Serina Endopeptidases/genética , Animais , Endopeptidases/imunologia , Corpo Adiposo/enzimologia , Corpo Adiposo/imunologia , Hemócitos/enzimologia , Hemócitos/imunologia , Hemolinfa/enzimologia , Hemolinfa/imunologia , Proteínas de Insetos/imunologia , Tegumento Comum , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Manduca/genética , Manduca/crescimento & desenvolvimento , Manduca/imunologia , Melaninas/imunologia , Monofenol Mono-Oxigenase/imunologia , Tecido Nervoso/enzimologia , Tecido Nervoso/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Pupa/imunologia , Serina Endopeptidases/imunologia , Transdução de Sinais , Traqueia/enzimologia , Traqueia/imunologia
17.
Arch Insect Biochem Physiol ; 99(1): e21476, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29873106

RESUMO

In insects, thioredoxin peroxidase (TPX) plays an important role in protecting against oxidative damage. However, studies on the molecular characteristics of TPXs in the Asiatic rice borer, Chilo suppressalis, are limited. In this work, a cDNA sequence (CsTpx3) encoding a TPX was identified from C. suppressalis. The deduced CsTPX3 protein shares high sequence identity and two positionally conserved cysteines with orthologs from other insect species, and was classified as a typical 2-Cys TPX. CsTpx3 was expressed most highly during the fifth-instar larval stage, and transcripts were most abundant in the midgut. Recombinant CsTPX3 protein expressed in Escherichia coli displayed the expected peroxidase activity by removing H2 O2 . Furthermore, CsTPX3 protected DNA from oxidative damage, and E. coli cells overexpressing CsTPX3 exhibited long-term resistance to oxidative stress. Exposure to various oxidative stressors, such as cold (8°C), heat (35°C), bacteria (E. coli), and two insecticides (chlorpyrifos and lambda-cyhalothrin), significantly upregulated transcription of CsTpx3. However, exposure to abamectin had no such effect. Our results provide valuable information for future studies on the antioxidant mechanism in this insect species.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Mariposas/genética , Estresse Oxidativo/genética , Peroxirredoxinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Feminino , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/genética , Larva/crescimento & desenvolvimento , Masculino , Mariposas/enzimologia , Mariposas/crescimento & desenvolvimento , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Filogenia , Pupa/enzimologia , Pupa/genética , Pupa/crescimento & desenvolvimento , Alinhamento de Sequência
18.
Electrophoresis ; 39(16): 2160-2167, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29761912

RESUMO

American foulbrood disease (AFB) is the main devastating disease that affects honeybees' brood, caused by Paenibacillus larvae. The trend of the research on AFB has addressed the mechanisms by which P. larvae bacteria kill honeybee larvae. Since prepupae could react to the infection of AFB by increasing protease synthesis, the aim of this work was to compare protease activity in worker prepupae belonging to healthy colonies and to colonies affected by AFB. This investigation was performed by zymography. In gel, proteolytic activity was observed in prepupae extracts belonging only to the healthy colonies. In the prepupae extracts, 2D zimography followed by protein identification by MS allowed to detect Trypsin-1 and Chymotrypsin-1, which were not observed in diseased specimens. Further investigations are needed to clarify the involvement of these proteinases in the immune response of honeybee larvae and the mechanisms by which P. larvae inhibits protease production in its host.


Assuntos
Abelhas/enzimologia , Eletroforese/métodos , Peptídeo Hidrolases/análise , Animais , Abelhas/microbiologia , Quimotripsina/análise , Interações entre Hospedeiro e Microrganismos , Larva/enzimologia , Larva/imunologia , Larva/microbiologia , Paenibacillus larvae/patogenicidade , Pupa/enzimologia , Tripsina/análise
19.
J Insect Sci ; 17(5)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28922901

RESUMO

The aldo-keto reductase AKR2E4 reduces 3-dehydroecdysone to ecdysone in the silkworm Bombyx mori L. In this study, a quantitative polymerase chain reaction analysis revealed that the level of AKR2E4 mRNA was higher in the testes than in other tissues, and a western immunoblot analysis revealed that the AKR2E4 content in the testes was stage-specific from the fifth larval instar to the pupal stage. Immunohistochemical analysis showed that the AKR2E4 protein was present in cyst cells associated with sperm cells and spermatocytes. These results indicate that AKR2E4 plays an important role in 3-dehydroecdysone conversion to ecdysone and spermatogenesis in silkworm testes.


Assuntos
Aldeído Redutase/genética , Bombyx/enzimologia , Bombyx/genética , Proteínas de Insetos/genética , Aldeído Redutase/metabolismo , Aldo-Ceto Redutases , Animais , Bombyx/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Masculino , Especificidade de Órgãos , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Testículo/enzimologia
20.
Insect Biochem Mol Biol ; 87: 165-173, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28720534

RESUMO

Akt, which is a key kinase in the insulin signaling pathway, plays important roles in glucose metabolism, cell proliferation, transcription and cell migration. Our previous studies indicated that low insulin levels and high p-Akt levels are present in diapause-destined individuals. Here, we show that PI3K, which is upstream of Akt, is low in diapause-destined pupal brains but high in p-Akt levels, implying that p-Akt is modified by factors other than the insulin signaling pathway. Protein phosphatase 2A (PP2A), which is a key regulator in the TGF-ß signaling pathway, can directly bind to and dephosphorylate Akt. Low PP2A expression and activity in diapause-destined individuals suggest that a weak Akt dephosphorylation contributes to p-Akt accumulation. In addition, transforming growth factor-ß receptor I (TßRI), which is upstream of PP2A, increases the activity of PP2A and decreases the p-Akt levels. These results show that TGF-ß signaling decreases p-Akt levels by increasing the activity of PP2A. This is the first report showing that TGF-ß signaling negatively regulates the insulin pathway in insect development or diapause.


Assuntos
Diapausa de Inseto/fisiologia , Mariposas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/fisiologia , Animais , Encéfalo/metabolismo , Mariposas/crescimento & desenvolvimento , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pupa/enzimologia , Pupa/crescimento & desenvolvimento , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...